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I have previously claimed the key to understanding the numerical value of the fine structure constant is near-field 
corrections which terminate integrals at low virtual photon energies, thus obverting an infrared divergence common 
to many QED calculations. I have since switched to a physics-based calculation of the near-field corrections, instead 
of the previously used educated guess. The relevant equations are presented here.  
 

Low-order Calculations 
 

A previously reported physics-based calculation of the 
fine structure constant [1] has been refined. Instead of 
invoking black-hole physics, my reasoning has been 
mapped into a more QED-like picture, where virtual 
vacuum photons are assumed to isotropically scatter from 
isolated electrons with a cross section of πƛ2. In the 
presence of isolated electrons this scattering process violates 
conservation of energy and momentum, but is allowed for 
times given by the time-energy uncertainty principle. In the 
presence of a pair of electrons, the standard far-field 
vacuum photons are scattered, and then exchanged and rattle 
between the pair. The energy in the near field generates a 
repulsive inverse-square force and defines a numerical value 
for the fine structure constant α~1/137. 

As previously reported, the fine structure constant can be 
expressed as 
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where fnf(ε) is the near-field correction factor that scales the 
isolated scattering cross section to take into account near-
field effects associated with the presence of a partner. It is 
squared because the buildup of the field energy between the 
pair is controlled by the scattering of far-field virtual 
photons into the region between the pair, and the scattering 
of the exchanging photons back into the far field. In the 
present short note I switch from a previous educated guess 
of the functional form of the near-field corrections, to a 
stronger explanation based on quantum mechanical 
reasoning associated with the overlap of the 3D wave 
functions of the scattered virtual photons surrounding each 
electron. The obtained low-order near-field correction is 
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A document showing the derivation needs to wait until my 
return from an upcoming business trip. 

Within my new picture, the anomalous magnetic moment 
of the electron can be estimated via 
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Using Eqs (1-3) the corresponding calculated quantities are 
α=1/142.08 and (g−2)/2=0.0011423.  

 
Possible Higher-order Corrections 
 

Higher-order corrections to the proposed near-field based 
formulation of some QED processes are complex. 
Arguments exist (to be documented later) that suggest the 
near-field corrections to higher order might be of the form 
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where n is an unknown value of the order of unity. An 
estimate of n can be obtained by setting the relationship of 
our calculated α and (g−2)/2 to that known from QED [2], 
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The corresponding estimate is n=4.750479. This is only ~1 
part in 104 away from 19/4. We do not know if any 
significance should be placed on the closeness of n to 19/4. 
The corresponding predictions are (g−2)/2=0.001159478 
and α=1/137.05664. These both differ from the known 
experimental values by ~1 part in 7000, or ~3α2 (relative). 
These differences are consistent with the accuracy expected 
of 4th order calculations with a missing 4th order term. If 
both Eqs (1) and (3) should be modified by the same 4th 
order correction scaling factor then this factor can be 
inferred via 0.001159478  ÷ 0.001159652 = 0.9998498. The 
corresponding inferred α is 1/137.03605. This differs from 
the known value by ~1 part in 3×106 with a relative 
difference very close to α3. This last result may be 
fortuitous. 
 
Conclusions 
 

These results support earlier suggestions that near-field 
corrections are the key to understanding the numerical value 
of the fine structure constant. More detailed studies of near-
field effects should be pursued. 
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